

Título: Modelos Estocásticos de la Propagación de Enfermedades mediante Ecuaciones Diferenciales Estocásticas con Perturbaciones Aleatorias

Viswanathan Arunachalam

Departamento de Estadística Universidad Nacional de Colombia Bogotá, Colombia varunachalam@unal.edu.co

Resumen:

La modelización estocástica representa una herramienta para comprender y controlar la dinámica de transmisión de enfermedades infecciosas en poblaciones. En este estudio, se incorpora la estocasticidad al marco de modelado mediante ecuaciones diferenciales estocásticas (EDE) con términos de perturbación, con el objetivo de capturar tanto la aleatoriedad inherente como la variabilidad ambiental que inciden en la propagación de enfermedades. Se propone un modelo epidémico estocástico formulado mediante ecuaciones diferenciales no lineales sujetas perturbaciones estocásticas. Aplicando técnicas de análisis estocástico, se demuestra la existencia y unicidad de una solución global positiva del sistema. Los parámetros del modelo se estiman a través de un enfoque avanzado de asimilación de datos, basado en conjuntos de datos epidemiológicos recientes. Se llevan

a cabo simulaciones numéricas para examinar el comportamiento dinámico del sistema bajo diversos escenarios estocásticos. Además, utilizamos datos reales de salud pública para ajustar el modelo y probamos su comportamiento a través de simulaciones, con estudio de casos enfocados en el dengue y de las infecciones respiratorias agudas. El análisis estadístico, que incluye estadísticas de ajuste y estimaciones de intervalos de confianza, y la capacidad predictiva de los modelos estocásticos propuestos.