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Uno vuelve siempre...

A los viejos sitios...

... Donde amó la vida.



Heinz Hopf



Heinz Hopf (1894–1971) fue un destacado topólogo alemán, recordado por sus contri-
buciones profundas a la geometría y la topología algebraica.
Entre ellas sobresale el enlace de Hopf (1931), el ejemplo más simple de un enlace no
trivial con más de una componente.

Crédito: Jim Belk (2010)
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Hopf
El topólogo
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¿Puedo hacer un nudo con una cuerda de 12 cm de largo y 1 cm de grosor?

En teoría de nudos física, si la respuesta fuera afirmativa, se diría que el nudo tiene
ropelength 12, pues este valor corresponde al cociente entre su longitud y su grosor.
Sin embargo, la respuesta es negativa. En 2005, Denne–Diao–Sullivan demostraron
que la ropelength de cualquier nudo no trivial debe ser al menos 15.66. La demostración
utiliza un argumento basado en cuadrisecantes.
Hasta 2002, el enlace de Hopf era el único enlace para el cual se conocía su ropelength
mínima. Ese año, Cantarella–Kusner–Sullivan construyeron nuevos ejemplos.
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Otro aporte de Hopf fue la fibración de Hopf (1931), una manera de describir la 3-esfera
S3 (la hiperesfera en cuatro dimensiones) a partir de los espacios S1 y S2:

Crédito: W. Irvine, D. Bouwmeester (2008)
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Crédito: Niles Johnson (2020)
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Si queremos ser técnicos, la construcción se describe así: identificamos R4 con C2 y R3

con C× R mediante:

(x1, x2, x3, x4)←→ (x1 + ix2, x3 + ix4), (x1, x2, x3)←→ (x1 + ix2, x3).

Así, definimos:

S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1}, S2 = {(z, x) ∈ C× R : |z|2 + x2 = 1}.

Entonces, la fibración de Hopf es:

h : S3 −→ S2, h(z0, z1) =
(
2z0z1, |z0|2 − |z1|2

)
.

Si h(z0, z1) = h(w0, w1), entonces existe λ ∈ C con |λ| = 1 tal que (z0, z1) = λ(w0, w1).
En consecuencia, para cada punto m ∈ S2, la fibra h−1(m) es un círculo:

h−1(m) ∼= S1.
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El linking number de un enlace mide cuántas veces una curva se enrolla alrededor de
la otra. En el caso del enlace de Hopf, su valor es ±1.
En el espacio euclidiano, el linking number siempre es un número entero, aunque
puede ser positivo o negativo dependiendo de la orientación de las dos curvas.

Crédito: Jim Belk (2007)
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Hopf generalizó esta idea y demostró que a toda función continua

ϕ : S2n−1 −→ Sn, (n > 1),

se le puede asociar un invariante homotópico, denotado h(ϕ) y llamado el invariante de
Hopf.

¿Qué debe cumplir ϕ para que h(ϕ) = 1?

En los años 60, Adams–Atiyah emplearon técnicas de K-teoría topológica para de-
mostrar que h(ϕ) = 1 si y solo si n = 1, 2, 4, 8. Esto es conocido como el Hopf Invariant
One Theorem.
En el fondo, estas correspondencias surgen de las construcciones de Hopf, relacionadas
con las álgebras de división reales normadas (no necesariamente asociativas). Por el
Teorema de Frobenius (1877), dichas álgebras son precisamente

R, C, H, O.
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Otro aporte fundamental de Hopf fue la introducción de los llamados H-espacios.
Definición
Un H-espacio es una tríada (X, e, µ) donde:
• X es un espacio topológico;
• e ∈ X es un punto distinguido;
• µ : X ×X → X es una aplicación continua tal que µ(e, e) = e.

Además, las funciones continuas

x 7−→ µ(x, e), x 7−→ µ(e, x),

deben ser homotópicas a la identidad mediante homotopías que fijen e.

Un H-espacio puede verse como una versión homotópica de un grupo topológico, donde
se relajan los axiomas de asociatividad e inversos.
Una reformulación del Hopf Invariant One Theorem establece que las únicas hiperesferas
que son H-espacios son S0, S1, S3 y S7 (Adams, 1958).
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A todo espacio topológico X se le puede asociar un anillo, usando los grupos de coho-
mología con coeficientes en un anillo conmutativo R y el producto copa ^ que opera
cociclos. Este anillo se denomina el anillo de cohomología de X:

H := H∗(X,R).

El anillo de cohomología del producto topológico X ×X es precisamente H ⊗R H. Si
además (X, e, µ) es un H-espacio, la aplicación µ : X ×X → X induce un morfismo
R–lineal

∆ : H −→ H ⊗R H.

En 1953, el sueco Armand Borel (1923–2003) estudió estas estructuras (H,^,∆) y
las denominó algèbres de Hopf.
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El (casi) salto al álgebra
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En 1957, Edward Halpern, bajo la dirección de Saunders Mac Lane (1909–2005),
introdujo por primera vez el concepto de hiperálgebra: una R–álgebra H que, además
de poseer una multiplicación y una unidad, cuenta con una aplicación adicional

∆ : H −→ H ⊗R H,

a la que llamó comultiplicación.
Sin embargo, fueron John W. Milnor (1931–) y John C. Moore (1925–2016) quienes
en 1965, y en versiones circuladas hasta una década antes, formularon por primera vez la
definición moderna de álgebra de Hopf y estudiaron varias de sus propiedades, incluyendo
el célebre Teorema de Milnor–Moore.
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Álgebras de HopfEl (ahora sí) salto al álgebra
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En palabras de Andruskiewitsch–Ferrer-Santos:

“El artículo [de Milnor–Moore] (...) tuvo una influencia amplia y profunda en el
desarrollo del tema, y quizá deba verse al mismo tiempo como la culminación de
la línea de trabajo topológica iniciada por Hopf y otros, así como la plataforma
de lanzamiento de un área nueva e independiente dentro del ámbito del álgebra
abstracta.”

— The beginnings of the theory of Hopf algebras (2009)

Durante las décadas de 1950 y 1960, autores como Jean Dieudonné (1906–1992),
Pierre Cartier (1932–2024), Bertram Kostant (1928–2017) y Georgiy Isaakovich
Kac (1924–1978) exploraron las propiedades de las álgebras de Hopf, ya desde un punto
de vista propio del álgebra abstracta más que de la topología algebraica o diferencial.
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Finalmente, el 1 de septiembre de 1969, Moss Sweedler (1942–) publica:
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Vladimir Drinfeld Michio Jimbo



En 1986, durante el ICM en Berkeley, Vladimir Drinfeld (1954–) introdujo el concepto
de grupo cuántico, estructuras que surgieron como deformaciones de álgebras envolven-
tes universales de álgebras de Lie, motivadas por la búsqueda de soluciones a la ecuación
de Yang–Baxter cuántica. De forma independiente, Michio Jimbo (1951–) llegó a cons-
trucciones equivalentes, dando origen a una clase interesante de álgebras de Hopf no
conmutativas ni coconmutativas.
Este descubrimiento provocó una verdadera explosión en la investigación sobre las ál-
gebras de Hopf, que dejaron de ser vistas únicamente como objetos algebraicos para
convertirse en un lenguaje unificador con profundas conexiones con la combinatoria, la
teoría de nudos, y la física cuántica de campos.
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El camino de vuelta
Del álgebra a la topología (y otras cosas más)
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En los años 80, Doi–Kreimer–Takeuchi se propusieron generalizar la teoría clásica
de Galois al contexto de las álgebras de Hopf. La idea consiste en reemplazar:

Grupos de Galois por álgebras de Hopf,
Extensiones de cuerpos por extensiones de Hopf–Galois.

Durante los años 90, estas ideas adquirieron una nueva relevancia en la formulación de la
geometría no conmutativa. En particular, Alain Connes, Tomasz Brzeziński, Christian
Kassel y otros observaron que las extensiones Hopf–Galois ofrecen un modelo algebraico
de fibrados principales no conmutativos, en los cuales la simetría no se expresa mediante
grupos, sino a través de álgebras de Hopf o sus deformaciones cuánticas.
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Primer impacto
Galois y la geometría no conmutativa
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Noncommutative geometry is based on the idea that, instead of working
with the points of a topological space X (or a C∞–manifold, or an algebraic
variety), we may just as well work with the algebra O(X) of continuous (or
C∞, or regular) functions on X.
Many geometrical constructions on X can be expressed by algebraic construc-
tions on the commutative algebra O(X), which in turn can be extended to not
necessarily commutative algebras.

— C. Kassel (2017).

19/33Fabio CalderónHopf: de la topología al álgebra y del álgebra a la topología 19/33Fabio CalderónHopf: de la topología al álgebra y del álgebra a la topología



Créditos: García-Bondía, Várilly, Figueroa (2001)
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Una categoría monoidal (C,⊗,1) consiste en:
• Una categoría C.
• Un bifuntor ⊗ : C × C −→ C, llamado producto monoidal.
• Un objeto distinguido 1 ∈ C, llamado objeto unidad.
• Isomorfismos naturales que expresan:

• Asociatividad: (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z), para todo X,Y, Z ∈ C.
• Unitalidad: 1⊗X ∼= X ∼= X ⊗ 1, para todo X ∈ C.

• Estos isomorfismos deben satisfacer las condiciones de coherencia:

X ⊗ (Y ⊗ (Z ⊗W )) ∼= X ⊗ ((Y ⊗ Z)⊗W ) ∼= ((X ⊗ Y )⊗ Z)⊗W
∼= (X ⊗ Y )⊗ (Z ⊗W ), ∀X,Y, Z,W ∈ C,

(X ⊗ 1)⊗ Y ∼= X ⊗ (1⊗ Y ) ∼= X ⊗ Y, ∀X,Y ∈ C.
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Segundo impacto
Categorías con producto
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¿Por qué alguien se interesaría en un concepto tan abstracto?
Porque las categorías monoidales aparecen en muchos contextos matemáticos.

Ejemplos:
• La categoría Vec de los k-espacios vectoriales es monoidal, con producto dado por

el producto tensorial ⊗ y objeto unidad 1 = k.
• La categoría Vec⊕ de los k-espacios vectoriales admite otra estructura monoidal,

ahora con producto dado por la suma directa ⊕ y unidad 1 = {0}.
• Las categorías AbGrp (grupos abelianos) y Ring (anillos) son monoidales con pro-

ducto ⊗Z y unidad Z.
• Si G es un grupo, la categoría G-Mod de G-módulos (izquierdos) es monoidal. Para

(V, ·) y (W, ∗) dos G-módulos, se define

(V, ·)⊗ (W, ∗) = (V ⊗W,.),

donde g . (v ⊗w) := (g · v)⊗ (g ∗w). Además, 1 = k con acción trivial g · λ = λ.
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Más ejemplos:
• La categoría Set de conjuntos es monoidal con producto dado por el producto

cartesiano, y unidad 1 = {·} (el conjunto de un solo punto).
• La categoría End(C) de endofuntores de una categoría C es monoidal con producto

dado por la composición de funtores, y unidad IdC .
• La categoría Top de espacios topológicos es monoidal con producto dado por el

producto cartesiano de espacios, y unidad el espacio con un solo punto.
• La categoría Hilb(C) de espacios de Hilbert complejos es monoidal: los morfismos

son operadores lineales acotados, el producto es el tensor de espacios de Hilbert, y
la unidad es C.
• Sea V un conjunto no vacío de vértices. La categoría V -Quiv de quivers con con-

junto de vértices V es monoidal: el producto se define tomando colecciones de
aristas componibles, y la unidad es el V -quiver sin aristas.
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Créditos: Pavlovic (2013)
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Créditos: nLab - Functorial field theory
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Algo increíble es que la relación entre categorías monoidales y álgebras de Hopf es
profunda y múltiple:

• Si H es un álgebra de Hopf entonces su categoría de módulos H-Mod es una
categoría monoidal. Esto, en general, no se cumple para módulos sobre anillos no-
conmutativos.
• Recíprocamente, muchas clases de categorías monoidales (por ejemplo, las catego-

rías de fusión, las categorías tensoriales o las categorías modulares) corresponden
a categorías de módulos sobre álgebras de Hopf (o sus generalizaciones). Ver, por
ejemplo, Etingof–Gelaki–Nikshych–Ostik (2016).
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Un (n+ 1)-cobordismo (W,M,N) es:

Créditos: Nils R. Barth (2009)
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Tercer impacto
TQFT
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Los cobordismos se pueden operar:

Créditos: Colosi, Oeckl (2020)
Easter egg: https://www.youtube.com/watch?v=lxLe68MrkIU
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Formalmente, una n–variedad con frontera M es un espacio topológico tal que ca-
da punto posee una vecindad homeomorfa a un abierto de Rn o del medio espacio
{(x1, . . . , xn) ∈ Rn : xn ≥ 0}. Los puntos de M que admiten vecindades del segundo
tipo se llaman puntos frontera, y el conjunto de todos ellos se denota por ∂M .

Definición
Una variedad cerrada es una variedad compacta M tal que ∂M = ∅.

Un (n+ 1)–cobordismo es una quíntupla (W,M,N, i, j) donde:
• W es una (n+ 1)–variedad diferenciable compacta con frontera;
• M y N son n–variedades cerradas;
• i : M ↪→ ∂W y j : N ↪→ ∂W son encajes cuyas imágenes forman una partición de
∂W .
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Una n–TQFT (teoría cuántica de campos topológica de dimensión n) es un funtor
monoidal

Z : Cobn −→ Vectk,

donde Cobn es la categoría de n–cobordismos, y Vectk es la categoría monoidal de
espacios vectoriales sobre k.
En la década de 1990, Michael Atiyah (1929–2019) y Vladimir Turaev (1954–) em-
plearon las TQFT para construir invariantes topológicos de variedades y nudos, como
los invariantes de Turaev–Viro y los de Reshetikhin–Turaev, formulados en términos de
categorías monoidales y álgebras de Hopf asociadas.
Un problema abierto importante es la clasificación de las TQFT por su dimensión. En
dimensión 2, una TQFT corresponde exactamente a un álgebra de Frobenius, mientras
que en dimensiones superiores existen caracterizaciones parciales en términos de álgebras
de Hopf, categorías monoidales y sus generalizaciones.
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Créditos: nLab - Functorial field theory
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Créditos: nLab - Functorial field theory
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Muchas gracias!

E-mail:
facalmat@uis.edu.co
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Sea k un cuerpo fijo y A una k–álgebra. Nos interesa expresar mediante diagramas dos
de sus leyes fundamentales:

• Asociatividad:
(ab)c = a(bc), ∀ a, b, c ∈ A.

• Unitalidad: Existe 1 ∈ A tal que

1a = a1 = a, ∀ a ∈ A.

¿Cómo se verían estos axiomas en una notación puramente visual?
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¿Pero qué es un álgebra de Hopf?
La vía fácil para definirlas
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Paso 1. A cada elemento del álgebra le asignamos una cuerda, representada por una
línea vertical:

a b

Paso 2. La multiplicación de dos elementos se representa como la fusión de sus cuerdas
en una sola, que corresponde al producto:

a b

ab

Paso 3. Al elemento identidad 1 le asignamos una cuerda especial, marcada con un
punto sólido:

1

¡Cuidado! Los diagramas se leen de arriba hacia abajo, y las etiquetas pueden omitirse
si el contexto es claro.
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La asociatividad se expresa como la igualdad de los siguientes diagramas de cuerdas:

=

De manera análoga, la unitalidad se representa así:

= =

El segmento vertical central simboliza el no hacer nada, es decir, la función identidad
de A.

33/33Fabio CalderónHopf: de la topología al álgebra y del álgebra a la topología 33/33Fabio CalderónHopf: de la topología al álgebra y del álgebra a la topología



Cuando afirmamos que a cada elemento del álgebra le corresponde una cuerda, estamos
siendo imprecisos: esto sugeriría que existe una representación distinta de la multiplica-
ción para cada par de elementos.
Una descripción más rigurosa se formula en términos de funciones. Reinterpretamos
entonces la multiplicación del álgebra A como la aplicación

m : A×A −→ A, (a, b) 7−→ ab.

En este lenguaje, la asociatividad se expresa mediante el siguiente diagrama conmutativo:

A×A×A A×A

A×A A

m×Id

Id×m m

m
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Para representar el elemento identidad de manera funcional debemos ser un poco más
creativos. Sea • := {e} el álgebra trivial, y definamos la aplicación

u : • −→ A, u(e) = 1A.

Notemos que ϕl : • × A → A, dada por ϕl(e, a) = a, es un isomorfismo natural. De
forma análoga se define ϕr : A× • → A.
En este lenguaje, la unitalidad se expresa mediante el siguiente diagrama conmutativo:

• ×A A×A A× •

A

u×Id

∼=
m

Id×u

∼=
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Puesto que las aplicaciones m y u definidas son bilineales, todo lo dicho hasta ahora para
el álgebra A y sus operaciones en términos del producto cartesiano × puede reescribirse
en términos de productos tensoriales.
¡Cuidado! Si no se está familiarizado con el producto tensorial de espacios vectoriales,
recordemos brevemente su idea principal: El producto tensorial V ⊗W de dos espacios
vectoriales V y W es un nuevo espacio que codifica todas las combinaciones bilineales
posibles de elementos de V y W . Formalmente, existe una correspondencia natural:

Bil(V ×W,U) ∼= Lin(V ⊗W,U),

donde Bil denota las aplicaciones bilineales y Lin las lineales. Además, si dim(V ) = n
y dim(W ) = m, entonces dim(V ⊗W ) = nm.
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Producto tensorial
Una cuestión técnica
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En resumen, una k–álgebra es un k–espacio vectorial A provisto de dos morfismos lineales
m : A⊗A→ A, u : k→ A,

llamados multiplicación y unidad, representados mediante los diagramas:

m =

A A

A

y u =
k

A

Estas operaciones satisfacen los siguientes diagramas de asociatividad y unitalidad:

= y = =
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Recapitulemos
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El concepto dual, llamado k–coálgebra, corresponde a un k–espacio vectorial C provisto
de dos morfismos lineales:

∆ =

C

C C

y ε =
C

k

denominados comultiplicación y counidad. Además, los axiomas duales, llamados coaso-
ciatividad y counitalidad, son:

= y = =
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¿Y si giramos los diagramas 180°?
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Una k–álgebra de Frobenius es un k–espacio vectorial H que es simultáneamente una
k–álgebra y una k–coálgebra, satisfaciendo las condiciones de Frobenius:

= =

Equivalentemente, esta condición se traduce en la existencia de una forma bilineal no
degenerada

σ : H ×H −→ k
tal que

σ(ab, c) = σ(a, bc), ∀ a, b, c ∈ H.
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¿Y si pedimos ambas condiciones?
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Otra forma de combinar las dos estructuras es exigir una compatibilidad alterna. Una
k–bialgebra es un k–espacio vectorial H que es simultáneamente una k–álgebra y una
k–coálgebra, satisfaciendo que la comultiplicación ∆ y la counidad ε sean morfismos de
álgebras.
Si, además, existe un morfismo k–lineal

S : H −→ H,

llamado antípoda, tal que

m ◦ (IdH ⊗S) ◦∆ = u ◦ ε = m ◦ (S ⊗ IdH) ◦∆,

entonces H se denomina una k–álgebra de Hopf.
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Álgebras de Hopf
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Sea G un grupo finito y sea kG el álgebra de las funciones de G en k, con suma y
multiplicación definidas componente a componente.
Usando el isomorfismo natural

kG ⊗ kG ∼= kG×G,

las operaciones que definen su estructura de coálgebra son:

∆(f)(x, y) = f(xy), ε(f) = f(1G), S(f)(x) = f(x−1), ∀x, y ∈ G, f ∈ kG.

Por tanto, kG es una k–álgebra de Hopf.
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Un ejemplo sencillo
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Siguiendo la terminología de Brzeziński–Fairfax (2012):

Definición
Un haz es una tripla (X,π,M) donde X y M son espacios topológicos, y π : X → M
es una aplicación continua y sobreyectiva.

Aquí, M se llama el espacio base, X el espacio total, y π la proyección del haz.
Para cada m ∈M , la fibra sobre m es el subespacio

Xm := π−1(m).

Una sección local del haz es una aplicación continua s : U → X tal que π ◦ s = IdM |U ,
donde U ⊆M es un abierto.
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Geometría no conmutativa
El formalismo
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Cuando las fibras de un haz son todas homeomorfas a un mismo espacio F , se le conoce
como un haz fibrado. En tal caso, se requiere que la proyección π sea localmente trivial,
lo que significa que para cada m ∈ M existe un entorno abierto U ⊆ M de m y un
homeomorfismo

φ : π−1(U) −→ U × F

tal que π = p1 ◦ φ, donde p1 : U × F → U es la primera proyección.
Un ejemplo clásico e intuitivo de haz fibrado es la banda de Möbius. Su espacio base
M es un círculo que recorre longitudinalmente el centro de la banda, y la fibra F es
un segmento de recta que se extiende verticalmente. Cada fibra es homeomorfa a un
intervalo cerrado de la recta real, por lo que F = [0, 1].
¡Otro ejemplo es la Fibración de Hopf! Fue uno de los primero desarrollados.
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Credit: Lim Zheng Liang
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Fijemos un grupo topológico G.
Definición
Un haz principal es un haz fibrado π : X → M con una acción izquierda continua
G×X → X que satisface las siguientes condiciones:

1 π(g · x) = π(x), para todo g ∈ G y x ∈ X.
2 Para cualesquiera x, y ∈ X con π(x) = π(y), existe un único g ∈ G tal que

g · x = y.

En otras palabras, en un haz principal π : X → M (también llamado un G–torsor), la
acción del grupo preserva cada fibra π−1(m), y la acción de G en cada fibra es libre y
transitiva.
Se puede demostrar que cada fibra está en biyección con G, y que el espacio de órbitas
(denotado por X/G) es homeomorfo al espacio base M .
¡Bajo ciertas condiciones, Brzeziński–Fairfax (2012), probaron que los haces prin-
cipales corresponden a ejemplos de extensiones Hopf–Galois!
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