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sistema de gráficos Alfa
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demostraciones Alfa
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gráficos Alfa intuicionistas
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pregráfico Alfa clásico

Problema de fundamentación: definir o representar los gráficos 
existenciales como objetos matemáticos, mejor aún, geométricos.
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deformación continua

Los pregráficos Alfa

 : mS1 + Fn           ℝ
2,   : Fn → L

’ : m’S1 + Fn’          ℝ
2,  ’ : Fn’ → L

son equivalentes si

• m = m’, n = n’ (los dominios se pueden tomar iguales)

•  = ’

• Existe una isotopía Y :     ’ . Es decir,

la imagen por cada  Yt  es un pregráfico Alfa.

Un gráfico Alfa es una clase de isotopía de un pregráfico Alfa.



problema para el caso intuicionista

ℝ2
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funciones de Jordan (Arboleda & Díaz)

Una función de Jordan es una función 𝑓:ℝ2 ⟶ℝ2 tal que:

• para cada curva de Jordan 𝐶, la imagen 𝑓(𝐶) es una curva de 

Jordan;

• la imagen del interior Δ𝐶 por la función 𝑓 está contenida en 

el interior de la curva imagen: 𝑓 Δ𝐶 ⊆ Δ𝑓(𝐶).

𝑓



funciones de Jordan

Una función de Jordan es una función 𝑓:ℝ2 ⟶ℝ2 tal que:

• para cada curva de Jordan 𝐶, la imagen 𝑓(𝐶) es una curva de 

Jordan;

• la imagen del interior Δ𝐶 por la función 𝑓 está contenida en 

el interior de la curva imagen: 𝑓 Δ𝐶 ⊆ Δ𝑓(𝐶).

Una función fuerte de Jordan es una función de Jordan 𝑓 tal 

que la imagen del interior es el interior de la curva imagen:

𝑓 Δ𝐶 = Δ𝑓(𝐶).



ejemplos

✓ Cualquier función afín, de la forma 𝑓 𝒙 = 𝑀 𝒙 + 𝒃 con 𝑀 

lineal biyectiva y 𝒃  constante, es una función fuerte de 

Jordan (biyectiva).

Esto da cuenta de todas las transformaciones de la geometría 

euclidiana.

✓ La función

𝑓 𝒙 =
𝒙

𝒙 + 1

es una función fuerte de Jordan (inyectiva, no sobreyectiva).



propiedades

• Toda función de Jordan es inyectiva.

• Toda función de Jordan es acotada (=imagen de acot es acot).

• La función 𝑓 es de Jordan si y solo si 𝑓 ∇𝐶 ⊆ ∇𝑓(𝐶), aquí ∇𝐶 

es el exterior de la curva de Jordan.

• Toda función fuerte de Jordan es abierta.

• Toda función fuerte de Jordan es cerrada en su imagen.

• Toda función fuerte de Jordan es compacta (imagen de 

compacto es compacta).



Teorema. La función 𝑓:ℝ2 ⟶ℝ2  es una función fuerte de 

Jordan si y solo si es continua e inyectiva.

caracterización

Una función inyectiva entre espacios métricos es continua si y 

solo si es compacta (= imagen de compacto es compacto).

Luego, toda función fuerte de Jordan es continua.

Al revés, a una función inyectiva y continua ℝ2 ⟶ℝ2 se aplica 

el teorema de la invarianza del dominio de Brouwer: la imagen 

de cualquier abierto es homeomorfa al mismo.



(2) pregráficos intuicionistas

L es una limaçon y E una epitrocoide de dos lazos.

pE + qL + mS1 + Fn


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cada sumando es restricción de una

• continua

• inyectiva

cuyas imágenes son disyuntas
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(problema 1) fuerte y débil

Aún no se conoce un ejemplo de una función débil de Jordan, 

esto es, función de Jordan, pero no fuerte.

Si 𝑓:ℝ2 ⟶ℝ2 es una función de Jordan y el recorrido 𝑓(ℝ2) es 

simplemente conexo, entonces 𝑓  es una función fuerte de 

Jordan.

Características del contraejemplo buscado:

➢ inyectiva,

➢ no continua,

➢ no simplemente conexa.



(problema 2) extensión

Las funciones de Jordan se pueden definir en el contexto más 

general ℝ𝑛 ⟶ℝ𝑛  y, en realidad, allí se conservan todos los 

resultados mencionados.

Aún falta precisar cómo se podría definir una función de 

Jordan ℝ𝑚 ⟶ℝ𝑛 para 𝑚 ≠ 𝑛, de tal manera que se extiendan 

los resultados a ese caso.

Luego seguirían extensiones a espacios más generales en los 

que valga alguna versión del teorema de Jordan.
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