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Etapas

¿Qué se busca modular/moderar? ¿Y por qué?

¿Cómo se logra? Objetos condensados

¿Cómo se conecta esto con lógica (forcing/teoría de modelos)?
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Matemáticas condensadas: ¿Cómo llegué al tema?

• Temas anteriores: teoría de
modelos sobre haces (tesis de
maestría con Xavier Caicedo, hace
ya más de tres décadas). . .

• Una conferencia de Chris
Lambie-Hanson en Arctic Set
Theory en febrero de 2025. . .

• Una visita a Praga en julio pasado
a trabajar con Lambie-Hanson y su
grupo me hizo ver que muchos
temas viejos para mí estaban siendo
revividos por el trabajo de Clausen
y Scholze (y luego Bergfalk,
Lambie-Hanson, Šaroch). . .
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Etapa 1

¿Qué se busca modular/moderar? ¿Y por
qué?
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¿Qué se busca modular/moderar? ¿Y por qué?

Hacia 2017, Dustin Clausen y Peter Scholze inician un cambio de
categorías, una recategorización que permite usar álgebra para
estudiar mejor estructuras que combinan álgebra y topología.

¿Por qué lo hacen? Cierto «desbalance» se percibe al estudiar
categorías clásicas de objetos que mezclan álgebra y topología. El
ejemplo clave es el siguiente:
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Objetos naturales, mal comportamiento ambiente

En la categoría TopAb, la función identidad

Rdisc ↪→ R

no es un isomorfismo; sin embargo, ésto no es atestiguado
por kernel o cokernel no triviales. TopAb NO es una categoría
abeliana.

NOTA: es como si el tener la topología sobre el álgebra «dañara»
la categoría. La idea de Clausen y Scholze pasa por separar más
cuidadosamente el álgebra de la topología: no superimponer la una
a la otra en la misma estructura.
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Mayor complejidad de objetos/mejor comportamiento

Un conjunto/grupo abeliano/. . . condensado es un funtor
contravariante

T : CHaus → Set/Ab/ . . .

tal que

• (1) T (∅) = ⋆,

• (2) T (S0 ⊔ S1) = T (S0)× T (S1),

• (3) ∀ epi S ′ → S en CHaus con producto fibrado S ′ ×S S ′

y proyecciones π0, π1 en S ′, la función

T (S)→ {x ∈ T (S ′) : T (π0)(x) = T (π1)(x) ∈ T (S ′ ×S S ′)}

es biyectiva.
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Más sucintamente. . .

Un [*] condensado es un haz [*]-valuado
sobre el sitio pre-étale asociado a un punto.

El sitio pre-étale es LLENAR
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Etapa 2

¿Cómo se logra? Objetos condensados
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¿Cómo se sumergen las categorías clásicas en las nuevas?

Dado X espacio topológico, definimos X (S) = Cont(S ,X ). Esto
resulta ser un conjunto condensado. Si X es compactamente
generado, X (⋆) ≈ X (en Top). Esta inmersión es plenamente fiel,
si se restringe a estos espacios.

Si A es un grupo abeliano topológico, A dado por
A(S) = Cont(S ,A) resulta ser un grupo abeliano condensado.

Tenemos entonces maneras de condensar objetos. Luego veremos
en qué sentido corrigen las patologías.
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Topología sobre objeto subyacente (i)

Dado un conjunto (grupo abeliano, . . . ) condensado T , el ob-
jeto T (⋆) se llama objeto subyacente de T , y tiene la topología
cociente inducida por ⊔

S→T

S → T (⋆).

Dado S ∈ CHaus, cada x ∈ T (S) induce un mapa

gx : S → T (⋆)

así: s ∈ S induce primero la función fs : ⋆→ S que envía ⋆ a s.
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Topología sobre objeto subyacente (ii)

Luego definimos
gx(s) := T (fs)(x).

La topología de T (⋆) es la más fina que hace que las gx sean
continuas (compacto-generada).
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El Problema de Whitehead

Un grupo abeliano A es de Whitehead si para todo morfismo de
grupos sobreyectivo π : B → A tal que ker(π) ≈ Z existe un
homomorfismo σ : A→ B tal que π ◦ σ = 1A.

Es decir, toda sucesión exacta corta de la forma

0→ Z→ B → A→ 0

se rompe (escinde). Equivalentemente, Ext1(A,Z) = 0.

Por otro lado, A es libre ssi Ext1(A,C ) = 0, para todo grupo C .

Obviamente, todo grupo libre es de Whitehead. En los años
1940/1950, Whitehead preguntó si vale el recíproco.
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El problema de Whitehead (y un lío matemático)

Problema de Whitehead: ¿Es todo grupo de Whitehead libre?

Aunque Stein demostró que cuando A es contable de Whitehead
debe ser libre, en los años 1970 Shelah demostró que el Problema
de Whitehead es independiente.

Teorema (Shelah):

• Si V = L, entonces todo grupo de Whitehead es libre.

• Si vale MAℵ1 , entonces existe un grupo de Whitehead que
no es libre, de cardinal ℵ1.
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«Condensar» el problema de Whitehead: Clausen-Scholze

Dados T0,T1 ∈ CondAb, Hom(T0,T1) tiene estructura natural de
grupo abeliano. Por otro lado, CondAb tiene un producto tensorial
y un funtor interno Hom, Hom(·, ·), con valores en CondAb que
satisface

Hom(T0,Hom(T1,T2)) ≈ Hom(T0 ⊗ T1,T2).
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«Condensar» el problema de Whitehead: Clausen-Scholze

En el caso particular en que A y G son grupos abelianos
topológicos compactos, tenemos que

Hom(A,G ) ≈ Hom(A,G ),

donde Hom(A,G ) tiene la topología compacta-abierta. Así, dado
S ∈ CHaus,

Hom(A,G ) ≈ Cont(S ,Hom(A,G )).

Ya teniendo una descripción de Hom, podemos tomar su funtor
derivado, Ext1 (·, ·). Dados A,B ∈ Ab, Ext1(A,B)(⋆) = Ext(A,B).
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Modular/moderar la topología: un caso interesante

El Problema de Whitehead condensado (formulado para
Ext1) NO es independiente de ZFC.

Teorema (Clausen-Scholze): Dado A grupo abeliano,
si Ext1(A,Z) = 0 entonces A es libre.

La demostración original parece ser compleja (y estar basada en
grupos abelianos sólidos, una sub-categoría de los grupos abelianos
condensados). Además (dicen Bergfalk, Lambie-Hanson y Šaroch),
es altamente inexplícita: dado un grupo abeliano no libre A, no
identifica un espacio S tal que Ext1(A,Z) ̸= 0.
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La estrategia de Shelah, y de B-LH-Š

Dado un grupo A, existe una sucesión exacta corta

0→ K → F → A→ 0

con K un subgrupo de F , F libre. A resulta ser de Whitehead ssi el
mapa inducido

Hom(F ,Z)→ Hom(K ,Z)

es sobreyectivo (es decir, si todo elemento de Hom(K ,Z) se
extiende a un elemento de Hom(F ,Z).

Parte de la estrategia de Shelah era ésta: dados suficientes
diamantes ♢, si A no es libre existe un elemento de Hom(K ,Z) que
no se extiende a un elemento de Hom(F ,Z).
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La estrategia de Shelah, y de B-LH-Š

Al condensar lo anterior, resulta que A es condensado-Whitehead
ssi el mapa

Hom(F ,Z)(S)→ Hom(K ,Z)(S)

es sobreyectivo, para todo S ∈ CHaus.

Pero Hom(F ,Z)(S) = Cont(S ,Hom(F ,Z )) (con la topología
compacta-abierta).
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Levantamientos

Así, para ver que A no es condensado-Whitehead, basta encon-
trar un espacio S ∈ CHaus y una función continua

φ : S → Hom(K ,Z)

tal que no existe función continua

ψ : S → Hom(F ,Z)

para la cual ψ(s) ⊃ φ(s) para todo s ∈ S .
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Combinatoria conjuntista

Los tres autores Bergfalk, Lambie-Hanson y Šaroch encontraron
que si A no es libre, existe una función φ como la anterior para
S = 2κ, donde κ es el mínimo cardinal de un subgrupo no libre de
A (es decir, Ext1(A,Z)(2κ) ̸= 0.

La construcción usa realmente un diamante débil (en ZFC)1.

1Dado κ cardinal regular no contable, existe una función continua
φ : 2κ →

∏
α<κ 2α tal que para toda función continua ψ : 2κ → 2κ, existe

x ∈ 2κ tal que {α < κ : φ(x)(α) = ψ(x)|α} contiene un club.
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Etapa 3

¿Cómo se conecta esto con lógica
(forcing/teoría de modelos)?
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Forcing: el modelo de nombres
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Forcing: el modelo de nombres

• Nombres - V , V P, V [G ].

• P se suele sumergir en su completación B, álgebra de Boole.
Así, los nombres se pueden ver como valores de morfismos en
B.

• El dual de Stone de B es un espacio topológico
extremadamente disconexo (ED) (la clausura de todo abierto
es abierto). Los espacios ED son los duales de Stone de las
álgebras de Boole completas.

• Hecho (folclor): dado Y espacio compacto de Hausdorff,
existe una correspondencia importante (¡ya vista aquí!)

24



La correspondencia de Stone

Si Y es un espacio compacto de Hausdorff,

B−nombres de elts de Y ←→ func. cont. de St(B) en Y .

Así, interpretar a Y en extensiones de forcing se logra
intercambiando puntos de Y por filtros maximales de cerrados no
vacíos de Y .
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Espacios Extremadamente Disconexos

Un hecho técnico, muy interesante y relevante para la conexión con
forcing, es el siguiente: se puede reformular la noción de objeto
condensado así:

Un conjunto/grupo/. . . condensado es un funtor contravariante
T : ED → Set/Ab/ . . . tal que

• T (∅) = ⋆,

• T (S0 ⊔ S1) = T (S0)× T (S1).
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Objetos proyectivos

Es decir, la condición «de pegamento» sale gratis en la
sub-categoría ED de CHaus, y no hay pérdida de información: todo
elemento de CHaus es imagen sobreyectiva de un elemento de ED -
y así, todo objeto condensado está determinado por su restricción a
ED.

Los elementos de ED son los «objetos proyectivos» de CHaus;
ejemplos típicos son compactificaciones de Stone-Čech βX , con X

discreto.
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Nombres y condensación

Volviendo al tema de forcing, recordemos que un espacio topológico
Y induce un conjunto condensado Y tal que Y (S) = Cont(S ,Y ),
para S ∈ ED. Por lo tanto, si Y ∈ CHaus, Y resulta ser una
presentación organizada de todos los nombres, en cualquier
extensión de forcing, de elementos de Y . Así, los tres autores
Bergfalk, Lambie-Hanson y Šaroch realmente demuestran que si A
es un grupo abeliano no libre y κ es el mínimo cardinal de un
subgrupo no libre de A, A no es de Whitehead en V [Add(ω, κ)] y
Ext1(A,Z)(Sκ) ̸= 0, donde Sκ es el espacio de Stone de la
completación booleana de Add(ω, κ).
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Finale - perspectivas

• La presentación categórica del forcing que resulta de lo
anterior en realidad no es más que un caso particular de teoría
de modelos sobre haces (Comer-Macintyre-Caicedo)

• Al reducir la categoría a categorías de espacios más
restringidas se obtienen modelos internos (trabajos recientes
de Basak y Veličković): obtienen los modelos de Solovay
donde todos los conjuntos son medibles

• Otros tipos de haces aún no han sido estudiados desde el
punto de vista de las matemáticas condensadas: haces sobre
otros sitios étale, haces sobre categorías de espacios
topológicos más generales.
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Una cuña
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Por fin

¡Gracias por su atención!

(Y feliz fin de semana/puente. . . )
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